
J. Fluid Mech. (1998), vol. 365, pp. 171–204. Printed in the United Kingdom

c© 1998 Cambridge University Press

171

Analysis of Rayleigh–Plesset dynamics for
sonoluminescing bubbles

By S A S C H A H I L G E N F E L D T1, M I C H A E L P. B R E N N E R2,
S I E G F R I E D G R O S S M A N N1 AND D E T L E F L O H S E1

1Fachbereich Physik der Universität Marburg, Renthof 6, 35032 Marburg, Germany
2Department of Mathematics, MIT, Cambridge, MA 02139, USA

(Received 22 February 1997 and in revised form 21 January 1998)

Recent work on single-bubble sonoluminescence (SBSL) has shown that many features
of this phenomenon, especially the dependence of SBSL intensity and stability on
experimental parameters, can be explained within a hydrodynamic approach. More
specifically, many important properties can be derived from an analysis of bubble
wall dynamics. This dynamics is conveniently described by the Rayleigh–Plesset (RP)
equation. Here we derive analytical approximations for RP dynamics and subsequent
analytical laws for parameter dependences. These results include (i) an expression
for the onset threshold of SL, (ii) an analytical explanation of the transition from
diffusively unstable to stable equilibria for the bubble ambient radius (unstable and
stable sonoluminescence), and (iii) a detailed understanding of the resonance structure
of the RP equation. It is found that the threshold for SL emission is shifted to larger
bubble radii and larger driving pressures if surface tension is increased, whereas even
a considerable change in liquid viscosity leaves this threshold virtually unaltered. As
an enhanced viscosity stabilizes the bubbles to surface oscillations, we conclude that
the ideal liquid for violently collapsing, surface-stable SL bubbles should have small
surface tension and large viscosity, although too large viscosity (ηl & 40ηwater ) will
again preclude collapses.

1. Introduction
1.1. Sonoluminescence

The analysis of the dynamics of a small bubble or cavity in a fluid dates back to
the work of Lord Rayleigh (1917) at the beginning of this century. A large number
of publications followed in subsequent decades, including the studies of oscillating
bubbles by Plesset (1949, 1954), Eller & Crum (1970), Flynn (1975a, b), Lauterborn
(1976), Prosperetti (1977), Plesset & Prosperetti (1977), and others. In recent years,
a renaissance of bubble dynamics has occurred initiated by the discovery of single-
bubble sonoluminescence (SBSL) by Gaitan (1990), see also Gaitan et al. (1992).

SBSL is an intriguing phenomenon. A single gas bubble of only a few µm size,
levitated in water by an acoustic standing wave, emits light pulses so intense as
to be visible to the naked eye. The standing ultrasound wave of the driving keeps
the bubble in position at a pressure antinode and, at the same time, drives its
oscillations. The experiments of Putterman’s group (Barber & Putterman 1991; Barber
et al. (1994, 1995); Hiller et al. 1994; Löfstedt, Barber & Putterman 1993; Löfstedt
et al. 1995; Weninger, Putterman & Barber 1996) and others have revealed a multitude
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of interesting facts about SBSL: the width of the light pulse is small (Barber &
Putterman 1991 give 50 ps as upper threshold, Moran et al. 1995 10 ps – recent
measurements by Gompf et al. 1997 report 100–300 ps, depending on the forcing
pressure and gas concentration in the liquid), the spectrum shows no features such
as lines (Hiller, Putterman & Barber 1992; Matula et al. 1995). While the exact
mechanism of light emission is still an open issue, almost all suggested theories – see
e.g. Löfstedt et al. (1993), Hiller et al. (1992), Flint & Suslick (1989), Wu & Roberts
(1993), Frommhold & Atchley (1994), Moss et al. (1994), Bernstein & Zakin (1995),
Moss, Clarke & Young (1997) – agree that temperatures of at least 104–105 K are
reached during bubble collapse. This, together with the light intensity, clearly shows
that SBSL relies on an extraordinarily powerful energy focusing process.

In our previous publications Brenner, Lohse & Dupont (1995), Brenner et al.
(1996b), Hilgenfeldt, Lohse & Brenner (1996), Brenner, Hilgenfeldt & Lohse (1996a),
Lohse et al. (1997), and Lohse & Hilgenfeldt (1997) we calculated phase diagrams
for bubbles and have focused on the identification of parameter regimes where
SBSL occurs. As a scan of the whole multi-dimensional parameter space is far too
expensive for full numerical simulations of the underlying fundamental equations (i.e.
Navier–Stokes and advection-diffusion PDEs), approximations must be introduced.
The necessary conditions for SL to occur could be calculated from the dynamics R(t)
of the bubble wall, which is – apart from a tiny interval around the bubble collapse
– very well described by the Rayleigh–Plesset (RP) equation. We call this approach
the RP–SL bubble approach.

The key parameters in an SL experiment are the ambient bubble radius R0 (radius
under normal conditions of 1.013 × 105 Pa = 1 atm and 20 ◦C), the driving pressure
amplitude Pa, and the gas concentration in the water surrounding the bubble p∞/P0,
measured by its partial pressure divided by the ambient pressure. Note that R0 is not
at the experimenter’s disposal, but adjusts itself by gas diffusion on a slow time scale
of seconds. Its size can, however, be measured in experiment, e.g. by Mie scattering
techniques as in Barber et al. (1995) or by direct microscopic imaging, see Tian,
Ketterling & Apfel (1996), Holt & Gaitan (1996). On time scales much smaller than
those of diffusive processes, e.g. for one period of driving, R0 may be regarded as a
constant to high accuracy.

In Hilgenfeldt et al. (1996) we found that the (Pa/P0, p∞/P0) state space is divided
into regions where (diffusively) stable SL, unstable SL or no SL are to be expected, the
predicted boundaries of the regions being in excellent agreement with experimental
findings. These results will now be briefly presented in the following subsection.

1.2. Stability requirements

Stable sonoluminescence is characterized by light emission in each period of driving
at precisely the same oscillation phase and precisely the same brightness for millions
(and sometimes billions) of cycles. We found that it occurs in a tiny section of the
whole parameter space only, and that the calculated domain agrees very well with
experimental findings, cf. Hilgenfeldt et al. (1996), Lohse et al. (1997). Its boundaries
are set by certain dynamical and stability conditions imposed upon the oscillating
bubble (Brenner et al. 1995, 1996b; Hilgenfeldt et al. 1996), as follows. (i) The bubble
wall velocity during collapse must reach the speed of sound in the gas cg to ensure
sufficient energy transfer from the liquid to the gas. (ii) The bubble must be stable
towards non-spherical oscillations of its surface which lead to fragmentation. Bubble
fragments have meanwhile been experimentally observed by J. Holzfuss (private
communication, 1997). (iii) The bubble must be stable towards diffusive processes, i.e.
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Figure 1. Stability conditions for a bubble in (Pa, R0) parameter space. Bubbles above the line
|Mg | = 1 fulfil the energy focusing condition (1.1). Bubbles below the shape instability lines are
stable to non-spherical surface oscillations. The solid line represents the (long-time-scale) parametric
instability, the dashed line short-time-scale shape instabilities, for details see Hilgenfeldt et al. (1996).
Bubbles on the thick lines are in diffusive equilibrium for p∞/P0 = 0.2, 0.002, respectively. Thick
arrows indicate regions of bubble growth and shrinking by diffusive processes.

it must not dissolve or grow by rectified diffusion; diffusively growing bubbles show
unstable SL. A further requirement of (iv) chemical stability becomes important when
the bubble contains molecular gases which are able to dissociate and recombine with
liquid molecules (Brenner et al. 1996a; Lohse et al. 1997; Lohse & Hilgenfeldt 1997).
For example, the differences in the parameter regimes of SL in air bubbles vs. SL in
noble gas bubbles can consistently be accounted for by dissociation of N2 and O2 in
an air bubble; these molecular constituents of air are burned, leaving only inert gases
in the bubble (the experimental work of Holt & Gaitan 1996 and Matula & Crum
1998 supports this model). We therefore restrict ourselves for simplicity to the case
of a bubble filled with argon. An extension to reactive gas mixtures as analysed in
Lohse et al. (1997) or Lohse & Hilgenfeldt (1997) is straightforward. Also, we specify
the liquid in which the bubble oscillates to be water, as in most SBSL experiments.

Figure 1 illustrates how the conditions (i)–(iii) determine domain boundaries in the
(Pa, R0) state space. Criterion (i) means that the Mach number with respect to cg is
larger than 1, i.e.

|Mg| =
|Ṙ|
cg
& 1, (1.1)

and it is fulfilled for bubbles with large enough ambient radii R0 and at large enough
forcing amplitude Pa, i.e. to the right of the dashed line in figure 1. The shape stability
condition (ii) – see Plesset (1954), Birkhoff (1954), Eller & Crum (1970), Strube
(1971), Prosperetti (1977), Brenner et al. (1995) or Hilgenfeldt et al. (1996) for detailed
studies – on the other hand, limits the parameter domain in which bubbles can stably
oscillate to small R0 . 4−5 µm, within our boundary layer approximation. As the RP-
SL approach neglects effects of thermal conduction, which has a damping influence
on surface oscillations, this upper limit on R0 may be somewhat higher in reality.
Holt & Gaitan’s (1996) experimental results seem to give a threshold around 7 µm.
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(i) and (ii) together determine the shaded area of potentially sonoluminescing bubbles
in figure 1. The actual position of a stable SL bubble in (Pa, R0) parameter space
is determined by condition (iii) for stable diffusive equilibria of the gas inside the
bubble and the dissolved gas in the liquid (thick lines in figure 1). These equilibrium
lines show negative slope whenever the equilibria are unstable, i.e. bubbles below the
line shrink and dissolve, bubbles above the line grow. At large gas concentrations
in the liquid (e.g. p∞/P0 ∼ 0.2, left-hand curve), only unstable equilibria are possible
in the parameter range of interest. Tiny ratios p∞/P0 ∼ 0.002 (right-hand curve) are
necessary for diffusive stability (i.e. the fluid must be strongly degassed). The positive
slope of the upper branch of the curve characterizes these bubbles as stable. The
computation of diffusive equilibria is explained in § 2.2.

1.3. Summary of results of the present work

Having identified the parameter regions for SBSL through numerical solution of
the RP equation, the question arises of whether one can understand the shape and
size of these regions analytically, i.e. by analysing the bubble dynamics equations. In
principle, all of the conditions that determine the occurrence of stable/unstable/no SL
depend only on properties of bubble dynamics. Therefore, we set out in this work to
derive analytical approximations for RP dynamics and subsequently find scaling laws
or approximate analytical expressions for our numerical curves presented above, in
order to give a clearer insight into the role of different physical processes governing the
dynamical equations. Moreover, more practical reasons make analytical expressions
highly desirable, as the multi-dimensional parameter space of SBSL experiments
cannot be scanned in detail just by numerical solution of the RP equation. Our
analytical efforts strongly build on previous work, most notably that of Löfstedt et al.
(1993). We present the most important results in this subsection, written such that
experimental parameters can be directly inserted to yield numerical values. Here we
have used fixed ω = 2π × 26.5 kHz and P0 = 1 atm. More detailed results and the
complete derivations for general ω, P0 will be given in the corresponding Sections. All
the presented approximations naturally have limited parameter regimes of validity,
which include the region of sonoluminescing bubbles in all cases.

We will demonstrate in § 2 that, in order to understand the location of diffusive
equilibria, it is sufficient to analyse the parameter dependence of the ratio of the
maximum bubble radius to its ambient radius (Rmax/R0), see Löfstedt et al. (1993).
We show in § 3 that two clearly distinct kinds of bubble dynamical behaviour exist
depending on Pa and R0: weakly oscillating and strongly collapsing bubbles. The
transition between these two states is rather abrupt and occurs for given Pa at an
ambient radius

Rtr0 ≈
4

9

√
3

σ

Pa − P0

≈ 0.562 µm

Pa/P0 − 1
. (1.2)

This transition is controlled by the surface tension σ, i.e. strong collapses are easier
to achieve for small σ.

In § 4, we derive analytical approximations to RP dynamics for all phases of the
oscillation cycle of a strongly collapsing bubble. We find that in this regime the bubble
essentially collapses like an empty cavity (see Rayleigh 1917) according to

R(t) ≈ 14.3 µm

(
Rmax

µm

)3/5(
t∗ − t
T

)2/5

, (1.3)

with the time of maximum bubble compression t∗ and the driving period T = 2π/ω.
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Following the collapse, a series of characteristic afterbounces of the bubble radius
occurs. We show in § 4.3 that they are the cause for the wiggly structure of the diffusive
equilibrium curves and the |Mg| = 1 line in figure 1. The location of the wiggles can
be understood as a parametric resonance phenomenon. A Mathieu approximation
yields the ambient radius of the kth wiggle as

R
(k)
0 ≈ 37.0 µm

q5/3

(q5/3 − 1)1/2

1

k
+ 0.487 µm

(
q5/3 − 2q + 1

q5/3 − 1
+ 2

2− q2/3

q2/3

)
(1.4)

with the abbreviation q = (1 + Pa/P0).
Section 4.4 deals with the bubble expansion. In the regime of strong bubble

collapses, an approximate result for the dependence of the maximum radius on Pa
and R0 is

Rmax

µm
≈ 67.2 + 0.112

(
R0

µm

)2

+ 99.5(Pa/P0 − π/2). (1.5)

With Rmax, the location of diffusive equilibria in (Pa, R0) parameter space can be
calculated.

A more detailed discussion of the role of surface tension and viscosity of the liquid
ηl is presented in § 5. In particular, the viscosity of water is so small that it has no
significant influence on bubble dynamics. Oscillations are only viscosity-dominated if

ηl &

(
1 +

0.487 µm

R0

)
8.72

(
R0

µm

)
ηwater , (1.6)

which corresponds to ηl & 40ηwater for typical R0.
Note that these equations are not fit formulas, but are analytically derived from

the RP dynamics. They are all verified by comparison to full numerical solutions in
the appropriate domains of validity. With these formulas, we are able to understand
most of the parameter dependences of SL analytically. Section 6 presents conclusions.

2. Rayleigh–Plesset bubble dynamics
2.1. Notation and parameters

Since Lord Rayleigh (1917, see Lamb 1932 for earlier references) treated the collapse
of an empty cavity in a liquid, there has been a lot of refinement in the modelling
of the dynamics of spherical domain walls in liquids. The main step towards bubble
dynamics was the introduction of a variable external driving pressure and of the
influence of surface tension by Plesset (1949).

An ODE for the bubble radius can be derived from the Navier–Stokes equations
from an approximation valid to the order of Ṙ/cl , where Ṙ is the speed of the bubble
wall and cl is the sound speed in the liquid. Following Prosperetti & Lezzi (1986),
Löfstedt et al. (1993) and many others, we will henceforth denote the following ODE
as the Rayleigh–Plesset (RP) equation:

ρl
(
RR̈ + 3

2
Ṙ2
)

= pgas(R, t)− P (t)− P0 +
R

cl

d

dt
pgas(R, t)− 4ηl

Ṙ

R
− 2σ

R
. (2.1)

The left-hand side of this ODE for the bubble radius R(t) consists of dynamical
pressure terms already known to Rayleigh (ρl = 1000 kg m−3 is the density of water).
P0 = 1 atm is the constant ambient pressure, P (t) the ultrasound driving, modelled as
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a spatially homogeneous, standing sound wave, i.e.

P (t) = −Pa cosωt = −P0 p cosωt (2.2)

with the dimensionless forcing pressure amplitude p ≡ Pa/P0 and a fixed frequency of
ω = 2π×26.5 kHz (period T ≈ 38 µs), which is a common value in many experiments
like those of Hiller et al. (1992) and Barber et al. (1994). The wavelength of this sound
in water is about 5 cm, while the bubble radii treated in this work never exceed 200µm.
Because of this separation of scales, it is common to assume spatial homogeneity,
as stated above. We will refer to the sum of experimentally controllable pressures as
the external pressure pext(t) = P0 + P (t). By definition, the external pressure exerts a
maximal outward directed force (pext = P0(1− p) < 0) on the bubble at t = 0.

The other terms on the right-hand side of equation (2.1) model the influence of the
surface tension at the bubble–water interface (σ = 0.073 kg s−2), the water viscosity
(ηl = 1.00 × 10−3 Pa s), and of emitted sound waves from the bubble (cf. Keller &
Miksis 1980, this term contains the speed of sound in water cl = 1481 m s−1).

The gas pressure pgas(R, t) inside the bubble is assumed to obey a van der Waals
type process equation

pgas(R, t) = pgas(R(t)) =

(
P0 +

2σ

R0

)(
R3

0 − h3

R3(t)− h3

)κ
, (2.3)

R0 being the ambient bubble radius and h the (collective) van der Waals hard-core
radius h = R0/8.86 (for argon) (Lide 1991). The pressure exerted by surface tension
was included explicity in (2.1). The σ-dependence of the prefactor of the polytropic
expression ensures that R0 is the radius of a static (unforced) bubble, neglecting effects
of gas diffusion. Note that (2.3) presupposes homogeneity of the pressure inside the
bubble. This is of course not satisfied in the final stages of bubble collapse, as a
more detailed investigation of the gas dynamics inside the bubble reveals, cf. Wu &
Roberts (1993), Moss et al. (1994, 1997) Vuong & Szeri (1996), Evans (1996), but
the violent collapse phase lasts only ∼ 1 ns out of the T ≈ 38 µs of the oscillation
cycle. Therefore, this approximation does not severely affect our analysis of bubble
wall dynamics. We furthermore set the effective polytropic exponent κ ≈ 1 as for this
frequency and bubble ambient radii below ∼ 20 µm the bubbles can be considered
to be isothermally coupled to the surrounding liquid (Plesset & Prosperetti 1977),
except during the small time interval around the bubble collapse, where the extremely
rapid bubble dynamics requires adiabatic treatment of the gas. This will be taken
into account in §§ 4.1 and 4.2. The solid line of figure 2(a) shows a time series R(t)
from (2.1) for relatively strong driving Pa = 1.4 atm and moderate ambient radius
R0 = 4.0 µm. The typical feature of the oscillations of R(t) is a slow expansion for
approximately half a cycle of driving, followed by a rapid and violent collapse and
a series of afterbounces corresponding to an almost free oscillation of the bubble.
The time scale of the afterbounces is thus set by the period of the bubble’s (small-
amplitude) eigenoscillations, whose frequency ωe ∼ 1 MHz can be easily obtained
from a linearization of (2.1):

R̈ + ω2
e (R − R0) =

Pa cosωt

ρlR0

(2.4)

with

ω2
e =

3P0

ρlR
2
0

, (2.5)
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Figure 2. (a) Bubble dynamics for Pa = 1.4 atm, R0 = 4.0 µm resulting from the RP equation (2.1)
(solid), Flynn’s equation (A 1) (dotted) and Gilmore’s equation (A 2) (dashed). The inset shows a
blowup of the vicinity of the collapse. (b) External pressure pext for the dynamics in (a). tm is the
time of maximum expansion, t∗ the time of collapse; pext = 0 at t = t+, t−. The different intervals
of the oscillation cycle treated in § 4 are indicated. (c) Mach numbers Ml for the time interval
displayed in the inset of (a). For the RP equation (solid) and Flynn’s equation (dotted) Ml = Ṙ/cl
with constant cl , for Gilmore’s equation (dashed) Ml = Ṙ/Cl with pressure dependent Cl .

where we have set κ = 1 and neglected surface tension and viscosity effects. Including
surface tension yields

ω2
s =

3P0

ρlR
2
0

+
4σ

ρlR
3
0

= (1 + 2
3
αs)ω

2
e , (2.6)

where αs = 2σ/(P0R0) is the ratio of surface tension pressure to P0 at R = R0; αs ≈ 1
for R0 ≈ 1.5 µm, while for larger R0 it becomes very small.

The resonance radius, on the other hand, is defined as the ambient radius of a
bubble with ωe = ω, i.e.

Rres =

(
3P0

ρlω2

)1/2

≈ 105 µm. (2.7)

For convenience, we list in table 1 the definition of the different pressure terms of
(2.1) which will appear throughout this paper.
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Pressure term Definition

pacc ρlRR̈

pvel
3
2
ρlṘ

2

pgas

(
P0 +

2σ

R0

)(
R3

0 − h3

R3 − h3

)κ

psur 2σ/R

pvis 4ηlṘ/R

psnd
R

cl

(
P0 +

2σ

R0

)
d

dt

(
R3

0 − h3

R3 − h3

)κ

pext P0 − Pa cosωt = P0(1− p cosωt)

Table 1. Definition of the pressure terms in the RP equation (2.1) used in this work.

Besides the solution of the RP equation (2.1), figure 2(a) shows time series ob-
tained from other commonly used bubble dynamical equations, namely Flynn’s and
Gilmore’s equation, which are discussed in detail in Appendix A. It is obvious that,
for bubbles in the SBSL regime, all equations yield very similar R(t) dynamics. It is
only upon magnification of the small time interval around the collapse (figure 2b)
that the differences between these descriptions of bubble dynamics become apparent.

The deviations of the RP, Flynn, and Gilmore equations from each other may
become pronounced when the bubble is driven at very high pressure amplitudes
such as Pa = 5 atm (cf. Lastman & Wentzell 1981). These pressures are common
in cavitation fields, but they are far too high to allow stable bubbles in SBSL
experiments (with the possible exception of SBSL in high magnetic fields described
by Young, Schmiedel & Kang 1996). Sonoluminescent bubbles require a driving
pressure amplitude in a narrow window 1.1 . Pa . 1.5 atm. It is this range of Pa
that we will mainly focus on in this work. Only in § 4.4 will results in the range of
cavitation field pressures briefly be displayed. Direct and indirect measurements of
the size of SL bubbles e.g. in Barber & Putterman (1992), Tian et al. (1996), or Holt
& Gaitan (1996) indicate that typical R0 lie around 5 µm.

2.2. Calculating diffusive equilibria from RP dynamics

A computation of points of diffusive equilibrium in the (Pa, R0)-plane from first
principles requires solution of an advection-diffusion PDE with appropriate boundary
conditions, coupled to the RP equation. This is numerically far too expensive to allow
a scan of the whole (Pa, R0) parameter space. In Brenner et al. (1966b) and Hilgenfeldt
et al. (1996a), we therefore employed the method introduced by Fyrillas & Szeri (1994)
and Löfstedt et al. (1995), which is based on the separation of the driving time scale T
and the diffusive time scale τdiff � T . Within this approximation, the task is massively
reduced to the solution of the RP equation and the computation of weighted averages
of the form

〈f〉i =

∫ T

0

f(t)Ri(t)dt

/∫ T

0

Ri(t)dt . (2.8)

The mass flux into or out of the bubble is then proportional to p∞ − 〈pgas〉4 (see
Fyrillas & Szeri 1994). An equilibrium point is characterized by the simple condition

p∞ = 〈pgas〉4 (2.9)
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occur at almost exactly the same R0 = Rc0 as the minima of 〈pgas〉4. Up arrows mark the Rc0, down
arrows indicate the transition radii Rtr0 (see § 3) for p = 1.3, 1.4, 1.5.

and it is stable if

β =
d 〈pgas〉4

dR0

(2.10)

is positive.
Figure 3(a) displays 〈pgas〉4 for different Pa. The graphs show characteristic wiggles

for larger R0 (which can be explained from resonance effects, see § 4.3) and, for large
enough Pa, a global minimum at some critical R0 = Rc0. If R0 > Rc0, even with no
wiggles present, the bubbles are diffusively stable according to the sign of the slope
β. For small R0 < Rc0, all equilibria are unstable, i.e. the bubble either dissolves or
grows by rectified diffusion, see Blake (1949), Eller & Flynn (1964) (the latter case
can lead to unstable SBSL, cf. Hilgenfeldt et al. 1996). The possibility of multiple
stable equilibria because of the resonance structure was recognized earlier by Church
(1988) and Kamath, Prosperetti & Egolfopoulos (1993). Here we analyse the formal
and physical origin of the positive overall slope of 〈pgas〉4 (R0) for large R0, which is
an essential property of stable SBSL bubbles.

In the average 〈pgas〉4 the pressure is weighted with R4(t) and will therefore be
dominated by the value of pgas at Rmax. For large radii, we can neglect the excluded
volume h3 in the van der Waals formula and replace (2.3) by an ideal gas law under
isothermal conditions,

〈pgas〉4
P0

≈ (1 + αs)

∫ T

0

R3
0R(t)dt∫ T

0

R4(t)dt

≈ ξ (1 + αs)

(
R0

Rmax

)3

. (2.11)
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ξ is a prefactor that is due to the different shape of the integrands R(t) and R4(t).

A crude estimate of ξ can be obtained by approximating R(t) by a parabola R̃(t) ∼
Rmax(1− 16t2/T 2) and integrating R̃ and R̃4 over one half-cycle from −T/4 to T/4.
This gives ξ = 105/64 ≈ 1.64, which is quite accurate in reproducing numerical
results. With this saddle point approximation introduced by Löfstedt et al. (1993),
the key parameter for diffusive equilibria is the expansion ratio Rmax/R0. Figure 3
demonstrates the close relation between 〈pgas〉4 and Rmax/R0 as functions of R0.
The expansion ratio displays a maximum at Rc0, corresponding to the minimum of
〈pgas〉4. In order to determine diffusive equilibrium points, one has to look for the
intersections of the 〈pgas〉4 /P0 curves in figure 3 with a horizontal line given by p∞/P0

(cf. equation (2.9)). Note that degassing to tiny partial pressures is necessary to achieve
equilibria in the R0 range of pure argon SL bubbles; this fact was first realized by
Löfstedt et al. (1995).

For high enough Pa, there are two equilibrium values for R0, the larger one being
a stable equilibrium, the smaller one being unstable. If Pa is decreased, 〈pgas〉4 /P0

increases and the equilibria come closer together. This can also be seen in figure 1: for
decreasing Pa, the R0 values given by the p∞/P0 = 0.002 equilibrium curve approach
each other. Eventually, at a certain Pa the stable and the unstable equilibrium coalesce
and for smaller Pa no equilibrium is possible. This is reflected in figure 3 by the fact
that the whole 〈pgas〉4 /P0 curve lies above p∞/P0.

For relatively high gas concentrations such as p∞/P0 = 0.2, stable equilibria can
only exist for very large R0, where the bubbles are shape unstable. But if the
concentration is lowered, e.g. to p∞/P0 = 0.002, the stable branch (positive slope in
figure 1) enters the region of sonoluminescent bubbles, whereupon stable SL can set
in. The occurrence of stable and unstable branches depends on the existence of a
minimum in 〈pgas〉4, which in turn necessitates a maximum in Rmax/R0 (figure 3a, b).
Therefore, to analyse the lines of diffusive equilibria in figure 1, it is sufficient to
explain the maximum of the expansion ratio figure 3(b) and its dependence on R0

and p; this question will be addressed in § 4.4.

3. Quasi-static Blake threshold
The transition from sharply increasing Rmax/R0 for small R0 to decreasing expansion

ratios for large R0 (figure 3b) marks an important boundary between two very different
types of bubble dynamics. Consider figure 4 where two examples of bubble dynamics
for the same Pa = 1.5 atm and only minutely different ambient radii are displayed.
The smaller bubble exhibits a weak (although obviously not sinusoidal) oscillation
with a maximum expansion ratio Rmax/R0 ≈ 2; no collapse is visible. The time series
of the larger bubble is almost indistinguishable from the other until t ≈ 0. But then,
a rapid expansion to Rmax/R0 ≈ 10 occurs, followed by a strong collapse, the typical
dynamics of a sonoluminescing bubble, cf. figure 2(a).

Figure 5 shows the compression ratio Rmin/R0 of the minimum radius achieved
during bubble oscillation to the ambient radius as a function of Pa and R0. A sharp
transition, like in the expansion ratio, is obvious in this graph and it occurs at the
same R0. For small Pa and small R0, Rmin/R0 is near one; we denote such bubbles
as weakly oscillating. For large Pa and R0, a horizontal plane at Rmin/R0 ≈ h/R0

indicates collapse to a radius very near the hard-core radius. We say that these latter
bubbles exhibit strong collapses.

The key to understanding this transition from weakly oscillating to strongly col-
lapsing bubbles lies in the existence of a threshold for spontaneous bubble expansion
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Figure 5. Compression ratio Rmin/R0 as a function of Pa and R0. The two regimes of bubble
dynamics are clearly visible: weakly oscillating bubbles for small R0 and small Pa, strong collapses
to the hard-core radius for large R0 and large Pa.

known as the Blake threshold (Blake 1949; Atchley 1989). It is normally considered
for bubbles under static conditions: let us first set P (and thus also pext) constant in
time, and correspondingly take R(t) to be time-independent. Then the RP equation
reduces to

0 =

(
P0 +

2σ

R0

)(
R0

R

)3

− pext −
2σ

R
, (3.1)

where for pgas again the isothermal ideal gas law was used, which is certainly an
excellent approximation for the static situation. For pext > 0, equation (3.1) has
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exactly one solution for positive R, and it corresponds to a stable equilibrium. If
pext < 0 but small in absolute magnitude, two equilibria exist, the one at larger R
being unstable, i.e. a bubble with larger radius would grow indefinitely. Finally, at a
critical pBext < 0 (Blake threshold pressure, cf. Prosperetti 1984) the two equilibrium
points merge and disappear in an inverse tangent bifurcation. In this situation, pgas
is always larger than pext + psur and (3.1) cannot be fulfilled for any radius. Thus, the
assumption of a time-independent R(t) has to be dropped. A dynamical expansion
ensues with significant contributions from the dynamical pressure terms on the left-
hand side of (2.1).

Returning to the oscillatory driving pext = P0(1 − p cosωt), we notice that the
driving period T = 2π/ω ≈ 40 µs is long compared to the time scale of the bubble’s
eigenoscillations 2π/ωe ∼ 1 µs. Thus, we can consider the external pressure oscillations
as quasi-static and follow Blake’s argument as above. As pext < 0 is necessary to cross
the Blake threshold, we must require p > 1 here. Obviously, the most sensitive point
in the cycle is t = 0, where pext is negative and of magnitude (p− 1)P0.

The quasi-static approximation (3.1) describes the complete time series of a weakly
oscillating bubble with good accuracy. Rewriting (3.1), we obtain the cubic equation

(p cosωt− 1)R3 − 2σ

P0

R2 +

(
1 +

2σ

R0P0

)
R3

0 = 0. (3.2)

Given a time t for which pext < 0, there is a critical R0 = Rtr0 above which the
two positive real solutions of (3.2) become complex. When this happens, the weak
oscillation dynamics is no longer a valid description and the transition to strong
collapses occurs. For given p, the smallest transition radius Rtr0 is required for t = 0.
For Rtr0 , therefore, the discriminant of (3.2) at t = 0 must vanish, i.e.

R3
0 +

2σ

P0

R2
0 −

32

27

σ3

P 3
0 (p− 1)2

= 0. (3.3)

After a lengthy but straightforward calculation, the transition ambient radius Rtr0 at
given p = Pa/P0 is obtained as

Rtr0 =
2

3

σ

P0


(

2

(p− 1)2
− 1 +

2

(p− 1)

(
1

(p− 1)2
− 1

)1/2
)1/3

+

(
2

(p− 1)2
− 1 +

2

(p− 1)

(
1

(p− 1)2
− 1

)1/2
)−1/3

− 1

 . (3.4)

Note that Rtr0 is a real number for all p. In figure 6 the calculated Rtr0 from (3.4) is
compared to the numerical values (identified by the condition Rmin/R0 = 0.5). The
agreement is very good, the errors at higher Pa being only about 0.01 µm.

When R0 exceeds Rtr0 , there is a period of time around t = 0 where the right-
hand side of (3.1) cannot be zero, but must be positive. Then, the dynamical terms
neglected so far must become noticeable and a dynamical expansion follows which
can only be stopped when pext has again become large enough to allow a stable
radius equilibrium. When the bubble growth is stopped, the expanded bubble does
not experience significant outward directed forces and, consequently, undergoes a
violent collapse. If R0 is only slightly larger than Rtr0 , the time scale separation still
holds for a large portion of the cycle, cf. figure 4.

It is immediately obvious from (3.3) and (3.4) that surface tension plays a key role
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Figure 6. Transition ambient radii Rtr0 from numerical solution of the RP ODE (circles) and from
(3.4) (dashed). This figure shows the same parameter range as figure 1, from which the |Mg | = 1
curve was taken (thin dashed line). The transition to collapsing bubbles occurs for slightly smaller
pressures and ambient radii than the onset of light emission at |Mg | = 1.

in this transition mechanism from weak oscillations to strong collapses. If p > 1,
weak oscillations at small R0 are dominated by the influence of σ, whereas the strong
collapses of larger bubbles are controlled by the dynamical pressures in (2.1) (cf.
§§ 4.1, 4.4). Note that in a fluid with very small σ, bubbles of very small size will
already show collapses (see also Löfstedt et al. 1995 and Akhatov et al. 1997). It
should also be emphasized here that the crucial driving parameter for the transition
is (p − 1), i.e. the difference of driving pressure amplitude Pa and ambient pressure
P0, rather than Pa itself.

In the limit of large forcing p� 1, (3.3) yields the much simpler formula

Rtr0 =
4

9

√
3
σ

P0

1

p− 1
. (3.5)

It can be seen from figure 3 that in this limit the difference between Rtr0 (onset of
transition) and Rc0 (extremum of expansion and compression ratio) becomes negligibly
small. Thus, (3.5) is also a good approximation to the critical Rc0 we were trying to
identify. This is confirmed by figure 7, from which the (small) errors of the saddle
point approximation (determining Rc0 from Rmax/R0 instead of 〈pgas〉4) can also be
read off.

What is the maximum radius of a bubble weakly oscillating at Rtr0 (p)? Inserting
(3.5) into (3.2) with t = 0 and expanding to the same order in 1/(p− 1) gives

Rmax =
4

3

σ

P0

1

p− 1
(3.6)

in the large-p limit. This yields a minimum expansion ratio of Rmax/R
tr
0 =

√
3

for the onset of bubble collapse, which is an analytical justification of Flynn’s
(1975b) definition of a transient cavity. In that work, a strongly collapsing bubble was
characterized by an expansion ratio & 2.

As the collapse sets in rather abruptly when R0 is enlarged, we expect that Rtr0 also
marks the transition to bubbles which fulfil the Mach criterion (1.1). Figure 6 shows
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Figure 7. Critical ambient radii Rc0 from numerical computation of the extrema of 〈pgas〉4 (filled
circles) and Rmax/R0 (open diamonds) and from the asymptotic law for Rtr0 equation (3.5) (dashed
line). The scaling behaviour Rc0 ∝ 1/(p− 1) from (3.5) is quite accurate for higher pressures p & 1.3.

the |Mg| = 1 line of figure 1 together with the Rtr0 (p) line according to (3.4). Both
curves display the same trend, approaching each other at large p. The Blake transition
occurs for smaller Pa and R0 than those necessary for |Mg| & 1, i.e. for possible light
emission. The physical consequence of this is that, upon increasing the driving force,
the bubble first emits cavitation noise due to collapses and only afterwards starts to
emit light. Indeed, such a sequence of events has been reported by W. Eisenmenger
& B. Gompf (private communication, 1996).

The transition line Rtr0 (p) is shifted towards smaller R0 for smaller σ. This means
that collapses of the same violence can be achieved (for a given R0 range) with smaller
driving pressures in a liquid with less surface tension. Note however that such bubbles
will also be more sensitive to surface instabilities, whereas in a liquid with high σ,
bubbles are more surface stable. It is therefore possible to obtain violent collapses at
larger R0 in liquids with larger surface tension using larger driving pressures.

4. A guided tour of RP dynamics
Let us now explain in detail the dynamics of strongly collapsing bubbles (as shown

e.g. in figure 2a). To this end, we divide the oscillation cycle of the bubble into several
time intervals indicated in figure 2(b), where tm is the time of maximum bubble radius,
t∗ the time of minimum bubble radius (after collapse), and t+ = −t− = arccos(1/p)/ω
the time when pext changes its sign from negative (expanding) to positive (contracting)
values. With this interval division scheme we extend an approach presented in the
pioneering paper by Löfstedt et al. (1993). In particular, we will treat the bubble
collapse phase denoted by C in figure 2(b) in the interval tm 6 t 6 t∗, the re-expansion
interval (R) very close to the time of maximum compression (t ≈ t∗), the afterbounces
(AB) for t∗ 6 t 6 t− and the bubble expansion in two stages for t− 6 t 6 t+(E1) and
t+ 6 t 6 tm (E2).

Within each of these intervals, certain pressure terms in (2.1) are dominant, whereas
others are negligible. Thus, simplified equations with analytical solutions can be
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Figure 8. Relevant pressure contributions according to the complete RP equation on a log-log scale
before the instant of collapse t∗. The bubble is driven at Pa = 1.4 atm and its ambient radius is
R0 = 4 µm.

derived, which enable us to characterize the complex bubble behaviour analytically
and quantitatively. Our approximate formulas hold in the regime of strongly collapsing
bubbles, i.e. for R0 > Rtr0 (Pa); in the weakly oscillating regime, the bubble dynamics
becomes of course trivial.

4.1. Rayleigh collapse (region C)

We first take a closer look at the main collapse (after Rmax has been reached,
interval C in figure 2b). Figure 8 shows an example of the typical behaviour of
the most important terms in the RP equation (defined in table 1) just prior to the
main collapse. The relative contributions of the terms are similar for all parameter
combinations in the SL regime. The abscissa displays the logarithm of the time
interval before the collapse time t∗ which is identified by the condition Ṙ(t∗) = 0, i.e.
the bubble reaches its minimum radius at t∗. The ordinate gives the logarithms of
the absolute values of the various pressure contributions. As the whole time interval
treated in this subsection is only ≈ 0.1 µs, and we want to discuss processes as fast
as 1 ns, we choose the polytropic exponent in (2.3) to be κ = 5/3, the adiabatic value
for argon. Note that the portions of the graphs for |t∗ − t| . 10−7T in figure 8,
as well as in figures 9–11 below, represent time scales on or below the picosecond
scale. As hydrodynamics breaks down here, this part of the computation will only be
able to give a reasonable effective dynamics. We will take care not to draw physical
conclusions from data in this range.

In a large part of the collapse phase the dynamical terms pacc and pvel give the
dominant contribution (figure 8); they compensate each other, so that the dynamics
is well described by the classical Rayleigh collapse

RR̈ + 3
2
Ṙ2 = 0. (4.1)
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Figure 9. Collapse dynamics of R(t) for the same parameters as in figure 8. This bubble reaches a
maximum radius Rmax ≈ 47 µm before collapsing. The theoretically expected Rayleigh scaling law
R(t) = RR(t∗ − t)2/5 (dashed) is followed accurately. Also indicated are the limiting times tvdw, tsnd
for the validity of the scaling law.

This formula complements the quasi-static approximation (3.1) above. Equation (4.1)
implies a scaling law for R(t):

R(t) = RR

(
t∗ − t
T

)2/5

. (4.2)

Here, the oscillation period T is used for non-dimensionalization of the time coor-
dinate. The characteristic radius RR can be estimated from an energy argument: at
R = Rmax, the potential energy of the bubble is approximately Epot ∼ 4πP0R

3
max/3,

see e.g. Smereka, Birnir & Banerjee (1987). Converting this into kinetic energy of the
fluid at R = R0, we get as an estimate for the bubble wall speed at R = R0

Ṙ |R=R0
= −

(
2P0

3ρl

)1/2(
Rmax

R0

)3/2

. (4.3)

Using the time derivative of (4.2), we find

RR = R0

(
5T
∣∣Ṙ |R=R0

∣∣
2R0

)2/5

=

(
25P0T

2

6ρl

)1/5

R3/5
max ≈ 14.3 µm

(
Rmax

µm

)3/5

. (4.4)

With this RR , (4.2) is compared to the numerical result of the RP ODE in figure 9.
Both slope and prefactor are reproduced excellently, despite the rather crude approx-
imations leading to (4.4). The characteristic value determining the Rayleigh collapse
dynamics is Rmax, which depends on Pa and (although weakly) on R0. Analytical
expressions for these dependences will be given in § 4.4.

We now examine the range of validity of (4.1); one could worry whether it is
justified to neglect pgas and psnd during collapse. For the solution (4.2), we have
pvel = −pacc ∝ (t∗ − t)−6/5, whereas (as long as R(t)3 � h3) pgas ∝ (t∗ − t)−2 and
psnd ∝ (t∗ − t)−13/5 for κ = 5/3, i.e. the latter two pressure contributions grow stronger
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than the dynamical terms as t → t∗. This can also be observed in figure 8, but the
absolute value of pgas and psnd is negligible compared to pvel , pacc except for times very
close to t∗. We can compute the range of validity of (4.1) by equating pgas = pvel
and psnd = pvel , respectively, using (4.2), (4.4). It turns out that the sound pressure
contribution is the first to violate (4.1). This happens at tsnd with

(t∗ − tsnd)/T =

(
192ρlc

2
l

25P0

)1/7
R0

clT
(1 + αs)

5/7

(
R0

Rmax

)18/7

≈ 1.0× 10−4 (1 + αs)
5/7

(
R0

Rmax

)18/7(
R0

µm

)
, (4.5)

which agrees with the numerical result e.g. in figure 8 (where R0 = 4 µm and Rmax ≈
47 µm). For the approximation (4.5), R3(tsnd) � h3 was assumed; αs is the surface
tension parameter introduced in (2.6). The collapse behaviour changes due to psnd
shortly before another assumption for (4.1) breaks down: obviously, R(t) cannot be
smaller than the van der Waals hard core h. Equating R(t) = h using (4.2) with
h = R0/8.86, we obtain the ‘hard-core time’

(t∗ − tvdw)/T =

(
6ρl

25P0

)1/2
1

T

h5/2

R
3/2
max

≈ 5.5× 10−6

(
R0

Rmax

)3/2(
R0

µm

)
. (4.6)

At t ≈ tvdw , the van der Waals hard core cuts off the scaling behaviour abruptly.
However, for typical values of R0 ≈ 4 µm, the bubble collapses like an empty cavity for
a time interval from (t∗−t) ∼ 1 µs down to (t∗−t) ∼ 100 ps (t∗−t ∼ 0.03T . . . 3×10−6T ).

4.2. Turnaround and delayed re-expansion (region R)

As the gas is compressed to the hard-core radius, the collapse is halted abruptly.
Löfstedt et al. (1993) have shown that – in the Hamiltonian limit neglecting psur, pvis,
psnd and the temporal variation of pext – the turnaround time interval of the bubble is
approximately

τturn ≡
(
R(t∗)

R̈(t∗)

)1/2

≈
[

3κ
ρlh

2

P0(1 + αs)

(
h

R0

)3κ(
Rmin − h

h

)κ]1/2

. (4.7)

This equation also follows from approximating the RP equation (2.1) by keeping only
the dominant terms in the immediate vicinity of the collapse, i.e. pacc and pgas (cf.
figures 8 and 10):

ρlRR̈ = P0 (1 + αs)

(
R3

0 − h3

R3(t)− h3

)κ
. (4.8)

Equation (4.8) is a good description of bubble dynamics for a time interval around
the collapse of length ∼ τturn.

Figure 10 shows the pressure contributions after t∗. From (t − t∗)/T ∼ 10−6 to
(t − t∗)/T ∼ 10−4 (i.e. from (t − t∗) ∼ 30 ps to ∼ 3 ns) the dominant terms in
(2.1) are pgas and psnd, which compensate each other. This means that the energy
stored in the compressed gas is released almost exclusively through emission of
sound waves (cf. Church 1989) – it is not converted back into kinetic energy of the
liquid surrounding the bubble. The corresponding dynamics shows a relatively low
expansion velocity and small acceleration, keeping a very small bubble radius for
a few ns (figure 11). This time interval of delayed re-expansion (denoted by R in
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Figure 10. Important pressure contributions according to the RP equation on a log-log scale after
the instant of collapse. The same parameters as in figure 8 apply.

figure 2b) is described by

0 = pgas(R(t)) +
R(t)

cl

d

dt
pgas(R(t)) (4.9)

with pgas given by (2.3). This ODE has an analytical solution:

cl

3κ
(t− t∗) =

[
R +

h

6
ln

(R − h)2

R2 + h2 + Rh
− h√

3
arctan

2R + h√
3h

]R(t)

Rmin

. (4.10)

For (R(t) − Rmin) � Rmin, i.e. just after the collapse, this implicit equation can be
simplified to yield

R(t) ≈ Rmin +
cl

3κ

R3
min − h3

R3
min

(t− t∗) . (4.11)

This linear expansion law holds for a longer time interval if Rmin is larger, i.e.
for smaller Pa. Its validity is demonstrated in figure 11. Note that although the
turnaround time τturn becomes smaller for decreasing Rmin − h, the velocity of the
bubble immediately after collapse is actually smaller because of the larger energy
losses through acoustic radiation. The strongly asymmetric shape of R(t) around t∗

has also been observed in experimental measurements of bubble dynamics, e.g. by
Barber & Putterman (1992), Tian et al. (1996), Weninger, Barber & Putterman (1997),
and Matula et al. (1998).

After the delayed re-expansion phase, the bubble wall gains speed and enters
another short time interval around (t − t∗) ≈ 10−3T well described by Rayleigh’s
equation (4.1) with R(t) ∝ (t − t∗)2/5 as the bubble expands. At (t − t∗) ≈ 10−2T it
enters the phase of subsequent afterbounces.
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and p = 1.5 in the vicinity of collapse. The dashed lines give the linear re-expansion approximation
from equation (4.11).

4.3. Afterbounces: a parametric resonance (region AB)

The discussion of the afterbounce interval (AB in figure 2b) is intimately connected
to the explanation of the wiggly structure of various dynamically computed terms,
like the expansion ratio (figure 3b) or the diffusive equilibrium lines in figure 1.
Obviously, as the RP equation (2.1) describes a driven oscillator, the maxima in the
expansion ratio represent parameter values of resonant driving. Figure 12 clarifies
the character of these resonances. It shows two time series of the bubble radius R(t)
at values of R0 corresponding to a relative maximum and a relative minimum of
Rmax/R0, respectively. A large or small expansion ratio results from the phase of the
afterbounces at the time when pext becomes negative, i.e. when the external forces
start the rapid expansion: for the bubble with the large expansion ratio, the last
afterbounce ‘fits’ into the expansion, which is enhanced. For the other bubble, growth
is inhibited as the last afterbounce collapse interferes with the expanding external
force.

The afterbounce oscillations show relatively small amplitude, and it is therefore
possible to linearize the RP equation in this region of the driving cycle. Moreover,
sound radiation and viscosity contributions are negligible. For simplicity, we also
neglect psur for the moment. In order to separate the time scale 1/ω of the driving
from the much shorter time scale of the afterbounces, which is ∼ 1/ωe, we use the
ansatz (cf. e.g. Hinch 1991)

R(t) = R̃0(τ)(1 + y(t)) (4.12)

with small y(t) and a slowly varying function R̃0(τ) which is to be determined;
τ = εt, ε = ω/ωe � 1. To leading orders in y and ε, equation (2.1) is transformed into

R̃2
0 ÿ = −ω2

e

R5
0

R̃3
0

y +
P0

ρl

(
R3

0

R̃3
0

− (1− p cosωeτ)

)
. (4.13)
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Figure 12. Two time series R(t) for Pa = 1.2 atm and R0 = 7.05 µm (dashed), R0 = 7.30 µm (solid).
The first ambient radius corresponds to a resonance minimum in Rmax/R0, the second to a maximum.
Note that the afterbounces at the beginning of the main expansion are just one half-cycle out of
phase.

Requiring the slowly varying (secular) term on the right-hand side to vanish, we have
to choose

R̃0(τ) = R0/ (1− p cos(ωeτ))
1/3 = R0/ (1− p cos(ωt))1/3 . (4.14)

With this definition, (4.13) results in a Hill equation:

ÿ + ω2
e (1− p cosωt)5/3y = 0. (4.15)

Because of the separation of time scales ωe � ω this equation represents a harmonic
oscillator with slowly varying eigenfrequency, i.e. the afterbounce frequency ωab =
ωe(1− p cosωt)5/6. For this system, E(ωab)/ωab (with E = 〈y2〉ω2

ab being the oscillator
energy) is an adiabatic invariant (see Hinch 1991), i.e.

〈y2〉(1− p cosωt)5/6 = const., (4.16)

where the mean 〈 · 〉 is an average over the fast time scale. Note that in the time
interval π/2 . ωt . 3π/2 of afterbounces (1 − p cosωt) > 0. It follows that the
amplitude of the afterbounces changes as R̃0y ∝ (1− p cosωt)−3/4.

The resonance structure of (4.15) still cannot be evaluated analytically. Yet the
parametric driving of (4.15) has a very similar shape to the cosine driving of a
Mathieu equation. We can therefore further approximate (4.15) by choosing suitable
constants Q1, Q2, where we require

Q1 − Q2 cos(ωt) = (1− p cos(ωt))5/3 for ωt = 1
2
π, π , (4.17)

i.e. Q1 = 1, Q2 = (1+p)5/3−1. The errors in this approximation are only a few percent
in the time interval ∼ [ 1

2
π, 3

2
π] of afterbounces we focus on. As an analytically

accessible approximation to the afterbounce dynamics of (2.1) we have thus the
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Mathieu equation

y′′ + 4
ω2
e

ω2

(
1−

[
(1 + p)5/3 − 1

]
cos 2x̂

)
y = 0 (4.18)

with dimensionless time x̂ = ωt/2; the primes denote derivatives with respect to x̂.
The contribution of surface tension may be included if αs � 1 to yield a refinement

of (4.18):

y′′ + 4
ω2
e

ω2

((
1 + 2

3
αs
)
−
[
(1 + p)5/3− 1 + 2

3
αs
(
1 + 2p− (1 + p)5/3

)]
cos 2x̂

)
y = 0, (4.19)

with the factor αs from (2.6). Note that a simple substitution ωe → ωs does not cover
all first-order effects of αs.

For certain parameter combinations, equation (4.19) shows parametrically stable
or unstable solutions. Because ωe/ω � 1, the best analytical approximation to these
characteristic values is given by the asymptotic series (Abramowitz & Stegun 1972)

b = νs1/2 − ν2 + 1

8
− ν3 + 3ν

26s1/2
∓ . . . (4.20)

with b = 4(ω2
e /ω

2)[(1−2αs/3)(1+p)5/3 + (4αs/3)(1+p)], s = 8(ω2
e /ω

2)[(1−2αs/3)(1+
p)5/3 + (4αs/3)p− 1 + 2αs/3], and ν = 2kM ± 1, where the sign distinguishes even from
odd Mathieu solutions; kM is the order of the Mathieu resonance, corresponding to
the number of afterbounces in the RP equation (see below). We take here only the
leading term on the right-hand side of (4.20) and treat the case kM � 1, so that
ν ≈ 2kM; moreover, we only keep terms up to first order in αs. This yields ambient
radii R(kM )

0 for which the oscillation shows maximum stability against parametric
excitation:

R
(kM )
0 =

(
3P0

2ρlω2

)1/2
q5/3

(q5/3 − 1)1/2

1

kM
+

2σ

3P0

(
q5/3 − 2q + 1

q5/3 − 1
+ 2

2− q2/3

q2/3

)
≈ 74.0 µm

q5/3

(q5/3 − 1)1/2

1

kM
+ 0.487 µm

(
q5/3 − 2q + 1

q5/3 − 1
+ 2

2− q2/3

q2/3

)
. (4.21)

Here we have abbreviated q = (p + 1). Note that the correction term due to surface
tension does not depend on kM .

Although the behaviour of the RP oscillator is fairly well described by Mathieu
oscillations in the afterbounce phase (see e.g. figure 13), it is of course entirely different
during the expansion interval of the cycle. Therefore, some information about the
overall shape of the oscillation must enter into our analysis. Especially, Mathieu
solutions can be T - or 2T -periodic. RP dynamics in the SL regime, however, only
allows for T -periodic solutions, as the 2T -periodic Mathieu solutions would require
large negative values for y. Therefore, every second resonance of (4.19) must be
dropped, i.e. the resonance of order kM of (4.19) corresponds to a resonance number
k = kM/2 of (2.1), so that the kth resonance radius R(k)

0 of (4.19) for a dynamics with
k afterbounces is obtained by replacing kM by 2k.

We must also provide additional information about the length of the afterbounce
interval. Figure 13 shows that this length, which is almost independent of p for
our Mathieu approximation, is significantly reduced for increasing p in the case of
the RP equation, because the expansion interval lasts longer. This is a property
of the nonlinear part of the RP cycle (cf. the next subsection), which cannot be
modelled within the Mathieu approximation. In Appendix B it is shown that the
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Figure 13. Comparison of time series from the numerical solution of the RP equation (2.1) (upper)
and a T -periodic solution of the Mathieu approximation (4.19) (lower) for the same parameters
p = 1.5, R0 = 6.0 µm. The onset of afterbounces is delayed in the full RP dynamics. The correction
factor (B 2) has to be employed. As the Mathieu solution is divergent (grows exponentially from
cycle to cycle), the lower curve was normalized once per cycle.

length of the afterbounce phase (and therefore the resonance number k) has to be
rescaled according to k → C(p)× k with C(p) approximately given by the expansion
C(p) ≈ 0.688− 0.548(p− π/2) + 0.418(p− π/2)2 (cf. (B 2)).

Figure 14 presents a comparison of the computed resonance radii of order (number
of afterbounces) k from numerical solutions of (2.1) – both for relative maxima and
minima of Rmax(R0) – and those from (4.19) for driving pressure amplitudes p = 1.2
and 1.5, corrected with C(p). The resonance locations are in good agreement for both
pressures, considering the multitude of approximations they were calculated with.

In the stability maxima marked by R(k)
0 the bubble is less excitable by the driving

than bubbles with neighbouring R0. Therefore, the expansion ratio has a local min-
imum and the average pressure 〈pgas〉4 ∝ 1/R3

max experiences a local maximum. The
existence of such wiggles in Rmax/R0 (and therefore in 〈pgas〉4) leads to the possibility
of multiple equilibria for given experimental parameters Pa and p∞: the ambient
radius can adjust itself diffusively to different stable equilibrium values, depending on
initial conditions and/or perturbations. For an analysis of the physical consequences
of multiple equilibria we refer the reader to the work of Brenner et al. (1996b), Hilgen-
feldt et al. (1996) and for a possible experimental observation to Crum & Cordry
(1994).

4.4. Bubble expansion (regions E1, E2)

We wish to be more quantitative about the properties of the expansion phase now.
Despite the small portion of parameter space for SL bubbles, there are different
types of expansion behaviour to be identified depending on p and R0. For p & 1
and large R0 & 10 µm, the gas pressure plays an important role and balances the
dynamical pressure, which is dominated by pvel for most of the cycle, so that a first
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Figure 14. Ambient radii R(k)
0 as a function of resonance order k = kM/2 from the full solution

of (2.1) (circles) and the analytical Mathieu approximation (4.21) (crosses); Pa = 1.2 atm (a) and
1.5 atm (b). Note that the circles represent relative maxima and minima of Rmax, because the Mathieu
equation admits twice as many resonance values as the RP equation. The Mathieu solutions were
rescaled by the factor C(p) of equation (B 2).

approximation to the dynamics is

3
2
ρlṘ

2 = pgas(R, t). (4.22)

With pgas(R, t) ≈ P0R
3
0/R

3 for large R0, this equation yields a solution for R(t):

R(t) =

[
R

5/2
− +

5

2

(
2P0

3ρl

)1/2

R
3/2
0 (t− t−)

]2/5

(4.23)

with the starting time of expansion t− and starting radius R− = R(t−). For radii
R � R−, (4.23) reduces to a Rayleigh-type expansion law, which gives a scaling
relation for the maximum radius:

Rmax ∝ R
3/5
0 , (4.24)

if we assume that the length of the expansion interval is independent of R0, which is a
good assumption except for small R0 below the Blake threshold (3.4). The law (4.24)
can numerically be confirmed for large R0, see Hilgenfeldt et al. (1996). Together with

(2.11) this yields 〈pgas〉4 ∝ R
6/5
0 .

For higher driving pressure amplitudes or smaller R0, i.e. in most of the SL
parameter region, the approximation (4.22) is too crude. Instead, one has to take into
account the balance of the dynamical pressures pacc, pvel and the external pressure pext

ρl(RR̈ + 3
2
Ṙ2) = P0(p cosωt− 1) , (4.25)

as can be seen e.g. in figure 15.
In the work of Löfstedt et al. (1993), the left-hand side of (4.25) has been approxi-

mated using a power series for R(t). This leads to a bubble expansion which is linear
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Figure 15. (a) Important pressure contributions for Pa = 1.4 atm, R0 = 4.0 µm during the expansion
phase. The thick dashed line gives the external pressure pext = P0 − Pa cosωt. In the time interval
E1, it is primarily balanced by pvel (solid), in E2 by pacc (dashed). (b) Bubble radius expansion
dynamics for the same parameters.
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Figure 16. Comparison of RP dynamics (solid) and theoretical approximation (dashed) of bubble
expansion dynamics for Pa = 1.5 atm, R0 = 5.0 µm. The theoretical solution becomes complex
left and right of its zeros. Also shown is the suggested theoretical solution (thin dashed line) from
equation (29) of Löfstedt et al. (1993), where R(t = 0) was matched to the value of the RP dynamics.

in time, with a velocity proportional to (p− 1)1/2. The first nonlinear corrections are
of fourth order in t.

However, an expansion like this turns out to be a series which is not well-controlled.
In particular, no reliable values for the time tmax and value Rmax of the maximal radius
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can be derived (cf. figure 16). We therefore follow a different ansatz: consider the
dynamical terms pacc and pvel for a typical bubble expansion (figure 15). During the
first, almost linear part |pvel | � |pacc|, whereas when the maximum is approached
and the bubble decelerates, |pacc| � |pvel |. This suggests a division of the expansion
interval into two parts (denoted by E1 and E2 in figures 2(b), 15, and 16). Observing
that the combination RR̈ + Ṙ2 is just the second derivative of R2/2, (4.25) can be
approximated with good accuracy by

d2

dx2
R2 = 4

9
R2
res(p cos x− 1) + O

(
R

d2

dx2
R

)
for x− 6 x 6 x+ , (4.26a)

d2

dx2
R2 = 2

3
R2
res(p cos x− 1) + O

(( d

dx
R
)2
)

for x+ 6 x 6 xm . (4.26b)

Here we have introduced the dimensionless time x ≡ ωt and the linear bubble
resonance radius Rres from (2.7); xm is defined by R(xm) = Rmax. The rational prefactors
on the right-hand side make sure that the dominant terms pvel in (4.26a) and pacc
in (4.26b) are correctly represented, while the other term gives contributions of the
indicated order in each case. The starting time x− = x−(p) and the transition time
x+ = x+(p) between both solutions are given by the zeros of pext, i.e. x+(p) = −x−(p) =
arccos 1/p. Equations (4.26a, b) can be integrated analytically requiring continuity
and differentiability at x+ for the overall solution. To complete the problem, initial
conditions at x− have to be imposed: we set R− = R(x−) = ζR0 with a parameter
ζ ∼ 1 whose value is not crucial for the shape of the solution. An estimate of ζ can be
computed from algebraic equations, but not in an explicit form. ζ lies between 1.2 and
2.0 for typical R0 of SL bubbles; for simplicity, we choose ζ = 1.6 in all calculations.
For the initial velocity, we observe that x− marks the transition from the afterbounce
regime, where the bubble essentially oscillates with its eigenfrequency, to the expansion
regime, where the governing time scale is the driving period T . Therefore, we set
R′− = (dR/dx)(x−) = R−, corresponding to Ṙ− = ωR− in dimensional notation.

Figure 16 shows that the shape of the expansion as well as the time and value of
the maximum are reproduced satisfactorily. From the solutions of (4.26a) in E1 and
(4.26b) in E2 one obtains a system of equations for Rmax and xm:

R2
max = R2

− (1 + 2(xm + x+))

+ 2
3
R2
res

[
1− p cos xm − 1

2
(x2
m − x2

+) + 1
3
(p sin x+ − x+)(xm + 3x+)

]
, (4.27)

p sin xm − xm + 1
3
(p sin x+ − x+) +

3R2
−

R2
res

= 0. (4.28)

Note that (4.27), (4.28) give the position and height of the radius maximum without
any freely adjustable parameters. The inset of figure 17 shows the maximum radii
obtained with these formulas for R0 = 5 and 9 µm and p = 1–5 together with results
from a complete RP computation. Apart from the resonance wiggles (cf. § 4.3), the
curves are very well reproduced both within the p-regime for SL bubbles and for the
much higher pressure amplitudes of cavitation field experiments.

Equation (4.28) is transcendental, and Rmax and xm do not have simple analytical
representations. One can, however, derive simple expressions in several limiting cases:
if p� 1, we obtain after a lengthy calculation

Rmax ≈ ( 2
3
)1/2Rres(Fp− G)1/2 (4.29)

with constants F = 1 + 5π/6 = 3.618 . . . , G = 19π2/24− 1 = 6.813 . . . . This formula
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Figure 17. Comparison of direct numerical results of Rmax (solid) for R0 = 5 µm (lower set of
curves) and R0 = 9 µm (upper) in the p-range relevant for SL with the approximate law (4.31a)
(dot-dashed) and the simpler formula (4.32) (long dashed). The inset shows that the full theory
(dashed) according to (4.27), (4.28) for Rmax(p) for the same two R0 gives excellent agreement with
the direct RP computation (solid) for both the SL range and the cavitation field regime p ∼ 2–5.
Even the approximation (4.31a) yields good results up to p ∼ 3 (dot-dashed).

is a good approximation only if p & 5. For p & 1, i.e. the case of interest for
sonoluminescent bubbles, we can expand xm around x = 1

2
π. Moreover, as Rres � R0

for SL driving frequencies, we can also neglect the last term on the right-hand side
of (4.28). To leading order in (xm − 1

2
π), (4.28) then becomes

xm = p+ 1
3
(p sin x+ − x+); (4.30)

remember that x+ = x+(p) = arccos(1/p). For p ∈ [1.0, 1.5], the second term of the
right-hand side of this equation is never greater than 0.185p in absolute magnitude,
so that xm = p is a good approximation. Inserting into (4.27) gives

R2
max = f(p)R2

0 + g(p)R2
res (4.31a)

with

f(p) = ζ2 (1 + 2(p+ x+)) , (4.31b)

g(p) = 2
3

[
1− p cos p− 1

2
(p2 − x2

+) + 1
3
(p sin x+ − x+)(p+ 3x+)

]
. (4.31c)

The second term in (4.31a) is much greater than the first; thus, it is not primarily
R0 which determines Rmax, but the resonance radius Rres. With Rres ∝ 1/ω, we see
that the expansion ratio is (at constant p and R0) roughly inversely proportional to
the driving frequency, i.e. upscaling of SL collapses can be achieved by lowering ω,
which was also seen in experiment by R. E. Apfel (private communication, 1996). In
the same way, a higher ambient pressure P0 (while keeping p = Pa/P0 constant) will
lead to higher expansion ratios because of the dependence of Rres on P0 (see (2.7)).
A further simplification of (4.31a) can be obtained from a stringent expansion in
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Figure 18. Direct numerical computation (solid) and theory (dot-dashed) according to (4.31a) for
the expansion ratio (Rmax/R0)(R0) at p = 1.2 (lower set of curves) and 1.5 (upper). The dashed curve
from (4.34) takes surface tension into account and is able to reproduce the numerical graphs for
almost all R0.

(p− 1
2
π) and R0, which yields to leading order the simple result

Rmax

µm
= 67.2 + 0.112

(
R0

µm

)2

+ 99.5(p− π/2) + O
(
(p− π/2)2

)
. (4.32)

Figure 17 shows the very good agreement of (4.31a) and (4.32) with full RP dynamics
for several R0 over the whole range of pressures in SL experiments. The approximation
breaks down only at p ∼ 3, where xm ≈ p is no longer valid, see inset of figure 17.
The expansion ratio is also accurately reproduced for moderate or large R0 by this
formula, as seen in figure 18. The deviations for small R0 are due to neglecting psur ,
which becomes the dominant influence as R0 approaches Rtr0 .

One would therefore like to include the effects of surface tension into (4.31a). We
make the following ansatz: instead of (4.26a, b), we write

d2

dx2
R2 = 4

9
R2
res

(
p cos x−

(
1 +

αs

K(p)

))
for x− 6 x 6 x+ , (4.33a)

d2

dx2
R2 = 2

3
R2
res

(
p cos x−

(
1 +

αs

K(p)

))
for x+ 6 x 6 xm . (4.33b)

This models the influence of psur by an average pressure contribution of P0αs/K(p),
where K is taken to be independent of R0. Expanding xm again around π/2, we get

R2
max = f(p)R2

0 +

[
g(p) +

2

3

αs

K(p)

(
1
2
(p2 + x2

+) + 1
3
px+

)]
R2
res (4.34)

with f(p), g(p) from (4.31b, c). With this expression, (Rmax/R0)(R0) shows a global
maximum at

Rc0(p) =
3σ

P0K(p)

1
2
(p2 + x2

+) + 1
3
px+

g(p)
. (4.35)



198 S. Hilgenfeldt, M. P. Brenner, S. Grossmann and D. Lohse

7

5

3

1
1.41.2

p∞/P0=0.002

p∞/P0=0.2

R
0 

(l
m

)

Pa (atm)

Figure 19. Diffusive equilibrium lines from figure 1 (solid) and their approximation using (4.34)
(dashed) near the parameter domain of sonoluminescing bubbles.

For large enough p, we can equate (4.35) and (3.5), because Rtr0 and Rc0 are very close
then. This gives an estimate for K(p):

K(p) = 9
4

√
3(p− 1)

1
2
(p2 + x2

+) + 1
3
px+

g(p)
. (4.36)

In the regime of SL driving pressures (p = 1.2 . . . 1.5) K(p) depends only weakly on
p; its value lies between 7.5 and 9.4. The ansatz (4.33a, b) proves very successful for
the description of (Rmax/R0)(R0) over the whole range of relevant R0, as can be seen
from figure 18.

From (4.34), we obtain expansion ratios and, using (2.9) and (2.11) for given gas
concentration p∞/P0, an approximation for the location R0(p) of diffusive equilibria
can be computed. Figure 19 shows that both the stable and the unstable branches
of the equilibrium curves (taken from figure 1) are reproduced satisfactorily for both
high and low gas concentrations.

When, starting on the stable branch, p is lowered, Rmax/R0 becomes smaller and, by
(2.11), 〈pgas〉4 becomes larger. The corresponding equilibrium ambient radii R0 shrink.
Eventually, the minimum of 〈pgas〉4/P0 becomes larger than p∞/P0 (see figure 3) and
no R0 can fulfil the equilibrium condition. This situation corresponds to the turning
point of the diffusive equilibria in figure 1 and figure 19.

5. Role of surface tension and liquid viscosity
The previous sections have provided a detailed analysis of the dynamics of SL

bubbles. How will these results change if we introduce a different fluid with different
surface tension σ and/or fluid viscosity ηl?

Surface tension is the crucial parameter for the location of the Blake threshold in
parameter space (cf. also Löfstedt et al. 1995 or Akhatov et al. 1997). The transition
from weakly oscillating to strongly collapsing bubbles and therefore the boundary
of the SL region determined by (1.1) is entirely controlled by σ. If we had σ → 0,
bubbles with any R0 would be strongly collapsing, i.e. liquids with small surface
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Figure 20. Parametric stability thresholds (solid), calculated as elaborated in Hilgenfeldt
et al. (1996), and |Mg | = 1 lines (dashed) for bubbles of different surface tension (a) and vis-
cosity (b). All other parameters were fixed at the values for water. Increasing σ makes the region of
potential SL bubbles above the |Mg | = 1 and below the stability threshold vanish, whereas higher
ηl enlarges this area.

tension should allow for violent collapses at smaller Pa. On the other hand, in liquids
with high σ larger Pa and R0 are required for collapses. Although a larger σ has a
stabilizing effect on the bubble surface, (3.5) and (4.35) show that the |Mg| = 1 line
overtakes the shape instability threshold in (Pa, R0) parameter space (cf. Hilgenfeldt
et al. 1996), so that no stable SL should be possible if σ is e.g. five times higher than
in water. This is easily confirmed by the numerical solution of the RP equation, see
figure 20(a).

At first sight it seems that fluid viscosity could have been neglected in (2.1) right
from the start. Apart from a slight damping effect during the afterbounce phase, the
influence of ηl for water on bubble dynamics is hardly noticeable: even a tenfold
increase of ηl only reduces the maximum radius by ≈ 10% (figure 21a,b). We can,
however, estimate by how much the viscosity would have to be enhanced to have a
significant effect: the damping of a high-viscosity liquid should ultimately prevent the
bubble from collapsing violently and therefore it will never fulfil the energy transfer
condition (1.1). As the collapse is in fact the first afterbounce minimum, an estimate
for this critical ηcl can be obtained if we demand the afterbounces to be overdamped.
The viscosity ηl introduces a damping term in the linearization of the RP equation
(2.4). It is easy to see that overdamped motion requires

2ηcl
ρlR

2
0

& ωe
(

1 +
αs

3

)
. (5.1)

With the definition of ωe, it follows that

ηcl &
(

1 +
αs

3

) (
3
4
ρlP0R

2
0

)1/2
. (5.2)

With a typical value R0 = 4 µm and keeping σ, ρl at the values for water, we obtain
that ηcl & 40ηwater . This is confirmed by direct computation of (2.1) using ηcl and
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Figure 21. Bubble dynamics R(t) for different viscosities (a) ηl/ηwater = 1, (b) 10, (c) 35, (d) 40, (e) 45.
R0 = 4 µm and Pa = 1.4 atm in all cases. The transition from collapse/afterbounce behaviour to
aperiodic dynamics occurs near ηl/ηwater = 40, as predicted from (5.2).

strong driving pressure Pa = 1.4 atm, see figure 21(c–e). Viscosities in this range
can be easily achieved in mixtures of water and glycerine. For moderate glycerine
percentage, the viscosity is not very different from pure water, but for high glycerine
content it rises dramatically. The required factor of 40 is (at 10 ◦C) reached for ≈ 70%
glycerine (weight percentage). Above this percentage, it would be extremely difficult
to obtain collapses strong enough to ensure energy transfer and the ignition of SL.
Moreover, chemical dissociation reactions in air cannot take place, which seem to be
necessary for SL stability using air at moderate degassing levels (Lohse et al. 1997).
This may be the reason why Gaitan (1990) was not able to observe stable bubbles
above a glycerine percentage of ≈ 60%. The actual threshold for SL should occur at
slightly smaller ηl than predicted by (5.2), because even if the collapse minimum is not
completely damped out, the collapse is already considerably weakened (figure 21c).
Also, the threshold should be lower because of the additional damping effect of
thermal dissipation (see Vuong & Szeri 1996; Yasui 1995) which is not included in
our approach.

Even for smaller ηl ∼ ηwater , fluid viscosity makes an important contribution to the
damping of bubble surface oscillations, as was shown in Hilgenfeldt et al. (1996), see
also Grossmann et al. (1997). Therefore, a moderate increase in ηl does not lead to
significant changes in the R(t) dynamics itself (and therefore in the |Mg| = 1 curve), but
it helps to stabilize bubbles at larger R0. This change affects only the parametric and
afterbounce instabilities (see Hilgenfeldt et al. 1996), which can show accumulation
effects over several driving periods, but not the Rayleigh–Taylor instability, which
is directly dependent on the acceleration of the bubble wall and cannot change
significantly when the R(t) dynamics does not. Therefore, the Rayleigh–Taylor process
still cuts off the bubble stability region (cf. figure 6 of Hilgenfeldt et al. 1996) at
Pa ≈ 1.45 atm almost independent of viscosity, whereas at smaller Pa, much larger
bubbles can be stable if ηl is enhanced.

In figure 20(b), we show surface stability curves for different fluid viscosities. For
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high ηl , the region of stably sonoluminescing bubbles between the almost unaffected
|Mg| = 1 curve and the increased stability threshold is considerably enlarged. This
would probably correspond to a substantial upscaling of SL intensity. Gaitan’s (1990)
experimental observation that a moderate percentage of glycerine helps to establish
stable SL bubbles supports this conjecture (see also the experimental results of
Gaitan et al. 1996 for fluids of different viscosity and surface tension). Also, the
increased viscosity of water at lower temperatures contributes to the explanation of
the increased SL intensity in cold water given in Hilgenfeldt, Lohse & Moss (1998),
an effect observed in experiment by Barber et al. (1994). Combining our results for
σ and ηl , we conclude that the ideal fluid for violently collapsing but surface-stable
bubbles should have small surface tension and high viscosity.

6. Conclusions
The analysis of the RP equation presented here has explained quantitatively quite

a lot of features seen in numerical computations of RP dynamics. One cycle of
oscillation of this highly nonlinear system can be completely divided into subsections
in which its behaviour can be accurately approximated by analytically integrable
equations. While being in the spirit of Löfstedt et al.’s (1993) previous analysis, the
present work presents more complete and more detailed results. We emphasize that
there are no freely adjustable parameters in our approach.

We made use of these approximations to calculate analytical laws for the bubble’s
collapse, afterbounce behaviour, expansion dynamics, maximum radius, and expan-
sion ratio. With these results we could clarify parameter dependences of numerically
calculated curves of diffusive equilibria in (Pa, R0) parameter space like those in fig-
ure 1. A summary of relevant analytical relations and predictions for experimental
verification was given in the Introduction.

An approximation of the RP equation by a Mathieu equation has explained
the wiggly resonance structure characteristic for many quantities derived from RP
dynamics. The concept of a quasi-static Blake threshold between regimes of weakly
oscillating and strongly collapsing bubbles was able to shed light on the existence of
stable diffusive equilibria in the SL regime for high driving pressures. The change of
sign in the slope of 〈pgas〉4 (R0) is a generic feature of RP dynamics, resulting from the
dominance of surface tension pressure at small R0. This allows the bubble to reach a
stable diffusive equilibrium.

In all approximations of the RP equation, the fluid viscosity term for water
or similar liquids could be neglected without causing large errors. Both numerical
computations and analytical estimates of the magnitude of pvis show that ηl has to be
as high as ∼ 40 ηwater to make a dominant contribution to bubble dynamics. Viscosity
does, however, have a strong influence on the dynamics of surface oscillations;
parametric instabilities are weakened for larger ηl .

Surface tension is the underlying cause for the change from unstable to stable
diffusive equilibria, which stabilizes small bubbles to the extent that they can only
show weak oscillations. For fluids with low σ, collapses of bubbles of a given size
are more violent. This is especially interesting if this effect is combined with higher
fluid viscosity to establish bubbles which show a similarly violent collapse dynamics
as bubbles in water while maintaining larger radii.

Other possibilities for an upscaling of the collapse intensity are the use of lower
driving frequencies ω or of larger ambient pressures P0 at the same Pa/P0. These
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predictions offer a useful guideline to experimenters in search of upscaled single-
bubble sonoluminescence.

This work has been supported by the DFG under grant SFB 185-D8 and by the
joint DAAD/NSF Program for International Scientific Exchange.

Appendix A. Modifications of the RP ODE
As stated in the Introduction, a lot of variations to the RP equation (2.1) are

known from the literature, see Lastman & Wentzell (1981, 1982) for an overview. We
mention here the form derived by Flynn (1975a, b)

ρl

[(
1− Ṙ

cl

)
RR̈ +

3

2

(
1− Ṙ

3cl

)
Ṙ2

]
=

(
1 +

Ṙ

cl

)[
pgas(R, t)− P (t)− P0 − 4ηl

Ṙ

R
− 2σ

R

]
+

(
1− Ṙ

cl

)
R

cl

d

dt

[
pgas(R, t)− 4ηl

Ṙ

R
− 2σ

R

]
, (A 1)

which contains correction terms of higher order in Ṙ/cl . It also includes time deriva-
tives of the surface tension and viscosity terms.

Gilmore’s equation (see e.g. Hickling 1963) differs from the other RP variations in
that its key variable for the gas is not pressure, but the enthalpy H at the bubble
wall:

ρl

[(
1− Ṙ

Cl

)
RR̈ +

3

2

(
1− Ṙ

3Cl

)
Ṙ2

]
=

(
1 +

Ṙ

Cl

)
H +

(
1− Ṙ

Cl

)
R

Cl

d

dt
H. (A 2)

Here, the sound speed Cl is not a constant, but depends on H . The exact form of
this dependence has to be specified by an equation of state for water, e.g. of modified
Tait form (Prosperetti & Lezzi 1986; Cramer 1980). Gilmore’s equation was shown
in Hickling (1963) to be an accurate description of a collapsing cavity up to Mach
numbers |Ml | = |Ṙ|/Cl as high as 5. Its validity for the present problem of collapsing
gas bubbles is, however, not well established (Prosperetti 1984).

Figure 2(a) compares the bubble radius dynamics R(t) computed from (A 1) and
(A 2) to the solution of (2.1). On this scale, the curves are almost indistinguishable.
Only a blow-up of the region around the radius minimum reveals deviations.

As all equations (2.1), (A 1), (A 2) have a common limit for small Ml , significant
deviations are only to be expected during collapses, when the bubble wall velocity
becomes of order of the sound speed. Figure 2(c) shows Ml for the different R(t)
dynamics. Obviously, large differences occur only around the main collapse, and they
are not important for the overall dynamics of the bubble, the collapse time interval
being exceedingly small. Thus, the RP equation provides a relatively simple and
very accurate description of bubble wall motion, which is confirmed by comparison
with recent experimental measurements of R(t) in Tian et al. (1996) or Weninger
et al. (1997). Note also that our criterion (1.1) for energy transfer uses Mg , the Mach
number with respect to cg , which (for argon) is almost 5 times smaller than cl (in
water). Therefore, the energy transfer threshold can be well computed within the
RP-SL approach.

Appendix B. Length of afterbounce interval
The Mathieu model equation (4.19) can only be expected to give an accurate

description of RP dynamics in the time interval [ 1
2
π, 3

2
π], for which it was matched
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to the Hill equation (4.15) via (4.17). Therefore, we have to compare the afterbounce
interval of RP dynamics to this constant interval of length π. Figure 13 shows that for
large driving p the Mathieu dynamics gives a good approximation for the end point
of the afterbounce interval (starting point of expansion phase), but fails to model the
onset time of afterbounces, i.e. the dimensionless collapse time x∗. Thus, the length of
the afterbounce interval is smaller than π by a factor C(p) = ( 3

2
π − x∗(p))/π.

The collapse time x∗ is relatively close to the maximum time xm. It is therefore
convenient to compute it from an expansion of (4.26b) in powers of (x − 1

2
π) and

(p− 1
2
π). This yields

x∗ ≈ 2.55 + 1.72(p− 1
2
π)− 1.31(p− 1

2
π)2. (B 1)

The coefficients can be computed analytically, but are of very complicated form.
This expression corresponds to a correction factor for the length of the afterbounce
interval and, equivalently, for the resonance order k, of

C(p) ≈ 0.688− 0.548(p− 1
2
π) + 0.418(p− 1

2
π)2. (B 2)

This is the correction introduced in § 4.3 which is important for a satisfactory descrip-
tion of the resonances of (2.1) by (4.19), see figure 14.
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